Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38341797

RESUMO

Diffusion of electrons over distances on the order of 100 µm has been observed in crystals of a small tetraheme cytochrome (STC) from Shewanella oneidensis [J. Huang et al. J. Am. Chem. Soc. 142, 10459-10467 (2020)]. Electron transfer between hemes in adjacent subunits of the crystal is slower and more strongly dependent on temperature than had been expected based on semiclassical electron-transfer theory. We here explore explanations for these findings by molecular-dynamics simulations of crystalline and monomeric STC. New procedures are developed for including time-dependent quantum mechanical energy differences in the gap between the energies of the reactant and product states and for evaluating fluctuations of the electronic-interaction matrix element that couples the two hemes. Rate constants for electron transfer are calculated from the time- and temperature-dependent energy gaps, coupling factors, and Franck-Condon-weighted densities of states using an expression with no freely adjustable parameters. Back reactions are considered, as are the effects of various protonation states of the carboxyl groups on the heme side chains. Interactions with water are found to dominate the fluctuations of the energy gap between the reactant and product states. The calculated rate constant for electron transfer from heme IV to heme Ib in a neighboring subunit at 300 K agrees well with the measured value. However, the calculated activation energy of the reaction in the crystal is considerably smaller than observed. We suggest two possible explanations for this discrepancy. The calculated rate constant for transfer from heme I to II within the same subunit of the crystal is about one-third that for monomeric STC in solution.


Assuntos
Citocromos , Elétrons , Transporte de Elétrons , Citocromos/química , Citocromos/metabolismo , Simulação de Dinâmica Molecular , Heme/química , Oxirredução
2.
Plant Cell Environ ; 47(4): 1099-1117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38038355

RESUMO

Many plants, especially trees, emit isoprene in a highly light- and temperature-dependent manner. The advantages for plants that emit, if any, have been difficult to determine. Direct effects on membranes have been disproven. New insights have been obtained by RNA sequencing, proteomic and metabolomic studies. We determined the responses of the phosphoproteome to exposure of Arabidopsis leaves to isoprene in the gas phase for either 1 or 5 h. Isoprene effects that were not apparent from RNA sequencing and other methods but were apparent in the phosphoproteome include effects on chloroplast movement proteins and membrane remodelling proteins. Several receptor kinases were found to have altered phosphorylation levels. To test whether potential isoprene receptors could be identified, we used molecular dynamics simulations to test for proteins that might have strong binding to isoprene and, therefore might act as receptors. Although many Arabidopsis proteins were found to have slightly higher binding affinities than a reference set of Homo sapiens proteins, no specific receptor kinase was found to have a very high binding affinity. The changes in chloroplast movement, photosynthesis capacity and so forth, found in this work, are consistent with isoprene responses being especially useful in the upper canopy of trees.


Assuntos
Fotossíntese , Proteômica , Hemiterpenos/metabolismo , Butadienos/metabolismo , Árvores/metabolismo , Pentanos/metabolismo , Folhas de Planta/metabolismo
3.
Plant Sci ; 338: 111900, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37863269

RESUMO

Robust agricultural yields depend on the plant's ability to fix carbon amid variable environmental conditions. Over seasonal and diurnal cycles, the plant must constantly adjust its metabolism according to available resources or external stressors. The metabolic changes that a plant undergoes in response to stress are well understood, but the long-distance signaling mechanisms that facilitate communication throughout the plant are less studied. The phloem is considered the predominant conduit for the bidirectional transport of these signals in the form of metabolites, nucleic acids, proteins, and lipids. Lipid trafficking through the phloem in particular attracted our attention due to its reliance on soluble lipid-binding proteins (LBP) that generate and solubilize otherwise membrane-associated lipids. The Phloem Lipid-Associated Family Protein (PLAFP) from Arabidopsis thaliana is generated in response to abiotic stress as is its lipid-ligand phosphatidic acid (PA). PLAFP is proposed to transport PA through the phloem in response to drought stress. To understand the interactions between PLAFP and PA, nearly 100 independent systems comprised of the protein and one PA, or a plasma membrane containing varying amounts of PA, were simulated using atomistic classical molecular dynamics methods. In these simulations, PLAFP is found to bind to plant plasma membrane models independent of the PA concentration. When bound to the membrane, PLAFP adopts a binding pose where W41 and R82 penetrate the membrane surface and anchor PLAFP. This triggers a separation of the two loop regions containing W41 and R82. Subsequent simulations indicate that PA insert into the ß-sandwich of PLAFP, driven by interactions with multiple amino acids besides the W41 and R82 identified during the insertion process. Fine-tuning the protein-membrane and protein-PA interface by mutating a selection of these amino acids may facilitate engineering plant signaling processes by modulating the binding response.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Membrana , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Lipídeos , Ácidos Fosfatídicos/metabolismo , Plantas/metabolismo , Proteínas de Membrana/metabolismo
4.
Small ; 19(52): e2304013, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37653599

RESUMO

The ability to redirect electron transport to new reactions in living systems opens possibilities to store energy, generate new products, or probe physiological processes. Recent work by Huang et al. showed that 3D crystals of small tetraheme cytochromes (STC) can transport electrons over nanoscopic to mesoscopic distances by an electron hopping mechanism, making them promising materials for nanowires. However, fluctuations at room temperature may distort the nanostructure, hindering efficient electron transport. Classical molecular dynamics simulations of these fluctuations at the nano- and mesoscopic scales allowed us to develop a graph network representation to estimate maximum electron flow that can be driven through STC wires. In longer nanowires, transient structural fluctuations at protein-protein interfaces tended to obstruct efficient electron transfer, but these blockages are ameliorated in thicker crystals where alternative electron transfer pathways become more efficient. The model implies that more flexible proteinprotein interfaces limit the required minimum diameter to carry currents commensurate with conventional electronics.


Assuntos
Nanofios , Transporte de Elétrons , Citocromos/química , Citocromos/metabolismo , Simulação de Dinâmica Molecular , Proteínas/metabolismo
5.
Plant Cell Environ ; 46(8): 2419-2431, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37212244

RESUMO

The thylakoid membrane is in a temperature-sensitive equilibrium that shifts repeatedly during the life cycle in response to ambient temperature or solar irradiance. Plants respond to seasonal temperature variation by changing their thylakoid lipid composition, while a more rapid mechanism for short-term heat exposure is required. The emission of the small organic molecule isoprene has been postulated as one such possible rapid mechanism. The protective mechanism of isoprene is unknown, but some plants emit isoprene at high temperature. We investigate the dynamics and structure for lipids within a thylakoid membrane across temperatures and varied isoprene content using classical molecular dynamics simulations. The results are compared with experimental findings for temperature-dependent changes in the lipid composition and shape of thylakoids. The surface area, volume, and flexibility of the membrane, as well as the lipid diffusion, increase with temperature, while the membrane thickness decreases. Saturated thylakoid 34:3 glycolipids derived from eukaryotic synthesis pathways exhibit altered dynamics relative to lipids from prokaryotic synthesis paths, which could explain the upregulation of specific lipid synthesis pathways at different temperatures. Increasing isoprene concentration was not observed to have a significant thermoprotective effect on the thylakoid membranes, and that isoprene readily permeated the membrane models tested.


Assuntos
Temperatura Alta , Tilacoides , Tilacoides/metabolismo , Temperatura , Plantas , Glicolipídeos/metabolismo
6.
Plant Direct ; 7(2): e483, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36742092

RESUMO

Isoprene has recently been proposed to be a signaling molecule that can enhance tolerance of both biotic and abiotic stress. Not all plants make isoprene, but all plants tested to date respond to isoprene. We hypothesized that isoprene interacts with existing signaling pathways rather than requiring novel mechanisms for its effect on plants. We analyzed the cis-regulatory elements (CREs) in promoters of isoprene-responsive genes and the corresponding transcription factors binding these promoter elements to obtain clues about the transcription factors and other proteins involved in isoprene signaling. Promoter regions of isoprene-responsive genes were characterized using the Arabidopsis cis-regulatory element database. CREs bind ARR1, Dof, DPBF, bHLH112, GATA factors, GT-1, MYB, and WRKY transcription factors, and light-responsive elements were overrepresented in promoters of isoprene-responsive genes; CBF-, HSF-, WUS-binding motifs were underrepresented. Transcription factors corresponding to CREs overrepresented in promoters of isoprene-responsive genes were mainly those important for stress responses: drought-, salt/osmotic-, oxidative-, herbivory/wounding and pathogen-stress. More than half of the isoprene-responsive genes contained at least one binding site for TFs of the class IV (homeodomain leucine zipper) HD-ZIP family, such as GL2, ATML1, PDF2, HDG11, ATHB17. While the HD-zipper-loop-zipper (ZLZ) domain binds to the L1 box of the promoter region, a special domain called the steroidogenic acute regulatory protein-related lipid transfer, or START domain, can bind ligands such as fatty acids (e.g., linolenic and linoleic acid). We tested whether isoprene might bind in such a START domain. Molecular simulations and modeling to test interactions between isoprene and a class IV HD-ZIP family START-domain-containing protein were carried out. Without membrane penetration by the HDG11 START domain, isoprene within the lipid bilayer was inaccessible to this domain, preventing protein interactions with membrane bound isoprene. The cross-talk between isoprene-mediated signaling and other growth regulator and stress signaling pathways, in terms of common CREs and transcription factors could enhance the stability of the isoprene emission trait when it evolves in a plant but so far it has not been possible to say what how isoprene is sensed to initiate signaling responses.

7.
Biomolecules ; 13(1)2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36671493

RESUMO

We develop a workflow, implemented as a plugin to the molecular visualization program VMD, that can fix ring penetrations with minimal user input. LongBondEliminator, detects ring piercing artifacts by the long, strained bonds that are the local minimum energy conformation during minimization for some assembled simulation system. The LongBondEliminator tool then automatically treats regions near these long bonds using multiple biases applied through NAMD. By combining biases implemented through the collective variables module, density-based forces, and alchemical techniques in NAMD, LongBondEliminator will iteratively alleviate long bonds found within molecular simulation systems. Through three concrete examples with increasing complexity, a lignin polymer, an viral capsid assembly, and a large, highly glycosylated protein aggrecan, we demonstrate the utility for this method in eliminating ring penetrations from classical MD simulation systems. The tool is available via gitlab as a VMD plugin, and has been developed to be generically useful across a variety of biomolecular simulations.


Assuntos
Simulação de Dinâmica Molecular , Conformação Molecular
8.
J Chem Theory Comput ; 18(10): 6161-6171, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36129782

RESUMO

Molecular simulation technologies have afforded researchers a unique look into the nanoscale interactions driving physical processes. However, a limitation for molecular dynamics (MD) simulations is that they must be performed on finite-sized systems in order to map onto computational resources. To minimize artifacts arising from finite-sized simulation systems, it is common practice for MD simulations to be performed with periodic boundary conditions (PBCs). However, in order to calculate specific physical properties, such as mean square displacements to calculate diffusion coefficients, continuous particle trajectories where the atomic movements are continuous and do not jump between cell faces are required. In these cases, modifying atomic coordinates through unwrapping schemes is an essential post-processing tool to remove these jumps. Here, two established trajectory unwrapping schemes are applied to 1 µs wrapped trajectories for a small water box and lysozyme in water. The existing schemes can result in spurious diffusion coefficients, long bonds within unwrapped molecules, and inconsistent atomic coordinates when coordinates are rewrapped after unwrapping. We determine that prior unwrapping schemes do not account for changing periodic box dimensions and introduce an additional correction term to the existing displacement unwrapping scheme to correct for these artifacts. We also demonstrate that the resulting algorithm is a hybrid between the existing heuristic and displacement unwrapping schemes. After treatment using this new unwrapping scheme, molecular geometries are correct even after long simulations. In anticipation for longer MD trajectories, we develop implementations for this new scheme in multiple PBC handling tools.


Assuntos
Simulação de Dinâmica Molecular , Muramidase , Algoritmos , Água
9.
J Chem Inf Model ; 62(17): 4200-4209, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36004729

RESUMO

Replica exchange molecular dynamics simulations are one of the most popular approaches to enhance conformational sampling of molecular systems. Applications range from protein folding to protein-protein or other host-guest interactions, as well as binding free energy calculations. While these methods are computationally expensive, highly accurate results can be obtained. We recently developed TIGER2hs, an improved version of the temperature intervals with global exchange of replicas (TIGER2) algorithm. This method combines the replica-based enhanced sampling in an explicit solvent with a hybrid solvent energy evaluation. During the exchange attempts, bulk water is replaced by an implicit solvent model, allowing sampling with significantly less replicas than parallel tempering (REMD). This enables accurate enhanced sampling calculations with only a fraction of computational resources compared to REMD. Our latest results highlight several issues with sampling imbalance and parameter sensitivity within the original TIGER2 exchange algorithms that affect the overall state populations. A high sensitivity on replica number and maximum temperature is eliminated by changing to a pairwise exchange kernel (PE) without additional sorting. Simulations are controlled by adjusting the average temperature change per exchange ⟨ΔT/χ⟩ to below 30 K to mimic a controlled temperature mixing of replicas similar to REMD. Thus, this parameter provides an applicable property for selecting combinations of replica number and maximum temperature to adjust simulations for best accuracy, with flexible resource investment. This increases the robustness of the method and ensures results in excellent agreement with REMD, as demonstrated for three different peptides.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Peptídeos/química , Dobramento de Proteína , Proteínas/química , Solventes/química , Temperatura
10.
J Inflamm Res ; 14: 2111-2119, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054303

RESUMO

PURPOSE: Although strongly related, the pathophysiological effect of the N34S mutation in the serine protease inhibitor Kazal type 1 (SPINK1) in chronic pancreatitis is still unknown. In this study, we investigate the conformational space of the human cationic trypsin-serine protease inhibitor complex. METHODS: Simulations with molecular dynamics, replica exchange, and transition pathway methods are used. RESULTS: Two main binding states of the inhibitor to the complex were found, which explicitly relate the influence of the mutation site to conformational changes in the active site of trypsin. CONCLUSION: Based on our result, a hypothesis is formulated that explains the development of chronic pancreatitis through accelerated digestion of the mutant by trypsin.

11.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807484

RESUMO

Transcription factors play a crucial role in regulating biological processes such as cell growth, differentiation, organ development and cellular signaling. Within this group, proteins equipped with zinc finger motifs (ZFs) represent the largest family of sequence-specific DNA-binding transcription regulators. Numerous studies have proven the fundamental role of BCL11B for a variety of tissues and organs such as central nervous system, T cells, skin, teeth, and mammary glands. In a previous work we identified a novel atypical zinc finger domain (CCHC-ZF) which serves as a dimerization interface of BCL11B. This domain and formation of the dimer were shown to be critically important for efficient regulation of the BCL11B target genes and could therefore represent a promising target for novel drug therapies. Here, we report the structural basis for BCL11B-BCL11B interaction mediated by the N-terminal ZF domain. By combining structure prediction algorithms, enhanced sampling molecular dynamics and fluorescence resonance energy transfer (FRET) approaches, we identified amino acid residues indispensable for the formation of the single ZF domain and directly involved in forming the dimer interface. These findings not only provide deep insight into how BCL11B acquires its active structure but also represent an important step towards rational design or selection of potential inhibitors.


Assuntos
Proteínas Repressoras/metabolismo , Proteínas Repressoras/ultraestrutura , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/ultraestrutura , Sequência de Aminoácidos/genética , Proteínas de Ligação a DNA/metabolismo , Dimerização , Transferência Ressonante de Energia de Fluorescência/métodos , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Proteínas Repressoras/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco/genética
12.
Sci Rep ; 11(1): 4542, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633190

RESUMO

Beta-2-glycoprotein I (ß2GPI) is a blood protein and the major antigen in the autoimmune disorder antiphospholipid syndrome (APS). ß2GPI exists mainly in closed or open conformations and comprises of 11 disulfides distributed across five domains. The terminal Cys288/Cys326 disulfide bond at domain V has been associated with different cysteine redox states. The role of this disulfide bond in conformational dynamics of this protein has not been investigated so far. Here, we report on the enzymatic driven reduction by thioredoxin-1 (recycled by Tris(2-carboxyethyl)phosphine; TCEP) of ß2GPI. Specific reduction was demonstrated by Western blot and mass spectrometry analyses confirming majority targeting to the fifth domain of ß2GPI. Atomic force microscopy images suggested that reduced ß2GPI shows a slightly higher proportion of open conformation and is more flexible compared to the untreated protein as confirmed by modelling studies. We have determined a strong increase in the binding of pathogenic APS autoantibodies to reduced ß2GPI as demonstrated by ELISA. Our study is relevant for understanding the effect of ß2GPI reduction on the protein structure and its implications for antibody binding in APS patients.


Assuntos
Autoanticorpos/química , Conformação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , beta 2-Glicoproteína I/química , Autoanticorpos/imunologia , Cisteína/química , Cisteína/metabolismo , Dissulfetos/química , Imunoglobulina G/química , Imunoglobulina G/imunologia , Microscopia de Força Atômica , Modelos Moleculares , Ligação Proteica/imunologia , Relação Estrutura-Atividade , beta 2-Glicoproteína I/imunologia , beta 2-Glicoproteína I/metabolismo
13.
Proteins ; 88(5): 679-688, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31693219

RESUMO

The bidirectional force transmission process of integrin through the cell membrane is still not well understood. Several possible mechanisms have been discussed in literature on the basis of experimental data, and in this study, we investigate these mechanisms by free and steered molecular dynamics simulations. For the first time, constant velocity pulling on the complete integrin molecule inside a dipalmitoyl-phosphatidylcholine membrane is conducted. From the results, the most likely mechanism for inside-out and outside-in signaling is the switchblade model with further separation of the transmembrane helices.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Integrina alfaVbeta3/química , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Sítios de Ligação , Membrana Celular/química , Membrana Celular/metabolismo , Cristalografia por Raios X , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Humanos , Integrina alfaVbeta3/genética , Integrina alfaVbeta3/metabolismo , Simulação de Dinâmica Molecular , Análise de Componente Principal , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Termodinâmica
14.
J Chem Inf Model ; 59(10): 4383-4392, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31509400

RESUMO

As a key player in cell adhesion, the glycoprotein fibronectin is involved in the complex mechanobiology of the extracellular matrix. Although the function of many modules in the fibronectin molecule has already been understood, the structure and biological relevance of the C-terminal cross-linked region (CTXL) still remains unclear. It is known that fibronectin is only phosphorylated in the CTXL domain, but no results have been presented to date, which indicate a biological function based on this phosphorylation. For the first time, we introduce a structural model of the CTXL region in fibronectin, which we obtained by exhaustive replica exchange molecular dynamics simulations (TIGER2hs). The sampling revealed a conformational landscape of the dimerization module, and the global minimum state showed an umbrella-like module body and conspicuous structural region with two feet. We observed that the CTXL foot region exhibits a structural stability in its physiological state, which disappears upon changes in the phosphorylation state. Thus, our in silico studies enabled us to show that the flexibility of the CTXL region is guided by phosphorylation. These results indicate an in vivo function of the CTXL domain in protein binding and cell adhesion, which is controlled by phosphorylation.


Assuntos
Fibronectinas/química , Aminoácidos , Adesão Celular , Fibronectinas/fisiologia , Modelos Moleculares , Simulação de Dinâmica Molecular , Fosforilação , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Estabilidade Proteica
15.
J Phys Chem B ; 123(28): 5995-6006, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31265293

RESUMO

In many cases, native states of proteins may be predicted with sufficient accuracy by molecular dynamics simulations (MDSs) with modern force fields. Enhanced sampling methods based on MDS are applied for exploring the phase space of a protein sequence and to overcome barriers on rough conformational energy landscapes. The minimum free energy state is obtained with sampling algorithms providing sufficient convergence and accuracy. A reliable but computationally very expensive method is replica exchange molecular dynamics, with many modifications to this approach presented in the past. Recently, we demonstrated how our temperature intervals with global exchange of replicas hybrid (TIGER2h) solvent sampling algorithm made a good compromise between efficiency and accuracy. There, all states are sampled under full explicit solvent conditions with a freely chosen number of replicas, whereas an implicit solvent is used during the swap decisions. This hybrid method yielded a much better approximation to the agreement with calculations in an explicit solvent than fully implicit solvent simulations. Here, we present an extension of TIGER2h and add a few layers of explicit water molecules around the peptide for the energy calculations, whereas the dynamics in fully explicit water is maintained. We claim that these water layers better reproduce steric effects, the polarization of the solvent, and the resulting reaction field energy than typical implicit solvent models. By investigating the protein-solvent interactions across comprehensive thermodynamic state ensembles, we found a strong conformational dependence of this reaction field energy. All simulations were performed with nanoscale molecular dynamics on two peptides, the α-helical peptide (AAQAA)3 and the ß-hairpin peptide HP7. A production-ready TIGER2hs implementation is supplied, approaching the accuracy of full explicit solvent sampling at a fraction of computational resources.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Solventes/química , Sequência de Aminoácidos , Peptídeos/química , Conformação Proteica em alfa-Hélice , Temperatura
16.
PLoS One ; 14(4): e0214969, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30978226

RESUMO

Integrins are transmembrane proteins involved in hemostasis, wound healing, immunity and cancer. In response to intracellular signals and ligand binding, integrins adopt different conformations: the bent (resting) form; the intermediate extended form; and the ligand-occupied active form. An integrin undergoing such conformational dynamics is the heterodimeric platelet receptor αIIbß3. Although the dramatic rearrangement of the overall structure of αIIbß3 during the activation process is potentially related to changes in the protein secondary structure, this has not been investigated so far in a membrane environment. Here we examine the Mn2+- and drug-induced activation of αIIbß3 and the impact on the structure of this protein reconstituted into liposomes. By quartz crystal microbalance with dissipation monitoring and activation assays we show that Mn2+ induces binding of the conformation-specific antibody PAC-1, which only recognizes the extended, active integrin. Circular dichroism spectroscopy reveals, however, that Mn2+-treatment does not induce major secondary structural changes of αIIbß3. Similarly, we found that treatment with clinically relevant drugs (e.g. quinine) led to the activation of αIIbß3 without significant changes in protein secondary structure. Molecular dynamics simulation studies revealed minor local changes in the beta-sheet probability of several extracellular domains of the integrin. Our experimental setup represents a new approach to study transmembrane proteins, especially integrins, in a membrane environment and opens a new way for testing drug binding to integrins under clinically relevant conditions.


Assuntos
Complexo Glicoproteico GPIIb-IIIa de Plaquetas/química , Quinina/química , Anticorpos/química , Dicroísmo Circular , Humanos , Lipossomos , Manganês/química , Manganês/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Domínios Proteicos , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Técnicas de Microbalança de Cristal de Quartzo
17.
J Phys Chem B ; 122(29): 7295-7307, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-29966412

RESUMO

The structure of a protein is often not completely accessible by experiments. In silico, replica exchange molecular dynamics (REMD) is the standard sampling method for predicting the secondary and tertiary structures from the amino acid sequence, but it is computationally very expensive. Two recent adaptations from REMD, temperature intervals with global exchange of replicas (TIGER2) and TIGER2A, have been tested here in implicit and explicit solvents. Additionally, explicit, implicit, and hybrid solvent REMD are compared. On the basis of the hybrid REMD (REMDh) method, we present a new hybrid TIGER2h algorithm for faster structural sampling, while retaining good accuracy. The implementations of REMDh, TIGER2, TIGER2A, and TIGER2h are provided for nanoscale molecular dynamics (NAMD). All the methods were tested with two model peptides of known structure, (AAQAA)3 and HP7, with helix and sheet motifs, respectively. The TIGER2 methods and REMDh were also applied to the unknown structure of the collagen type I telopeptides, which represent bigger proteins with some degree of disorder. We present simulations covering more than 180 µs and analyze the performance and convergence of the distributions of states between the particular methods by dihedral principal component and secondary structure analysis.


Assuntos
Colágeno Tipo I/química , Solventes/química , Algoritmos , Sequência de Aminoácidos , Colágeno Tipo I/metabolismo , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/metabolismo , Análise de Componente Principal , Conformação Proteica em alfa-Hélice , Dobramento de Proteína , Estrutura Terciária de Proteína , Temperatura , Termodinâmica
18.
Proteins ; 85(6): 1119-1130, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28263412

RESUMO

Synthetic scaffolds containing collagen (Type I) are of increasing interest for bone tissue engineering, especially for highly porous biomaterials in combination with glycosaminoglycans. In experiments the integration of heparin during the fibrillogenesis resulted in different types of collagen fibrils, but models for this aggregation on a molecular scale were only tentative. We conducted molecular dynamic simulations investigating the binding of heparin to collagen and the influence of the telopeptides during collagen aggregation. This aims at explaining experimental findings on a molecular level. Novel structures for N- and C-telopeptides were developed with the TIGER2 replica exchange algorithm and dihedral principle component analysis. We present an extended statistical analysis of the mainly electrostatic interaction between heparin and collagen and identify several binding sites. Finally, we propose a molecular mechanism for the influence of glycosaminoglycans on the morphology of collagen fibrils. Proteins 2017; 85:1119-1130. © 2017 Wiley Periodicals, Inc.


Assuntos
Colágeno Tipo I/química , Colágeno/química , Glicosaminoglicanos/química , Heparina/química , Simulação de Dinâmica Molecular , Peptídeos/química , Algoritmos , Sequência de Aminoácidos , Sítios de Ligação , Osso e Ossos/química , Humanos , Impressão Molecular , Análise de Componente Principal , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Eletricidade Estática , Termodinâmica , Engenharia Tecidual , Tecidos Suporte
19.
Proteins ; 82(2): 195-215, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23818175

RESUMO

We propose a new approach for force field optimizations which aims at reproducing dynamics characteristics using biomolecular MD simulations, in addition to improved prediction of motionally averaged structural properties available from experiment. As the source of experimental data for dynamics fittings, we use (13) C NMR spin-lattice relaxation times T1 of backbone and sidechain carbons, which allow to determine correlation times of both overall molecular and intramolecular motions. For structural fittings, we use motionally averaged experimental values of NMR J couplings. The proline residue and its derivative 4-hydroxyproline with relatively simple cyclic structure and sidechain dynamics were chosen for the assessment of the new approach in this work. Initially, grid search and simplexed MD simulations identified large number of parameter sets which fit equally well experimental J couplings. Using the Arrhenius-type relationship between the force constant and the correlation time, the available MD data for a series of parameter sets were analyzed to predict the value of the force constant that best reproduces experimental timescale of the sidechain dynamics. Verification of the new force-field (termed as AMBER99SB-ILDNP) against NMR J couplings and correlation times showed consistent and significant improvements compared to the original force field in reproducing both structural and dynamics properties. The results suggest that matching experimental timescales of motions together with motionally averaged characteristics is the valid approach for force field parameter optimization. Such a comprehensive approach is not restricted to cyclic residues and can be extended to other amino acid residues, as well as to the backbone.


Assuntos
Hidroxiprolina/química , Simulação de Dinâmica Molecular , Algoritmos , Motivos de Aminoácidos , Sequência de Aminoácidos , Humanos , Ressonância Magnética Nuclear Biomolecular , Prolina/química , Termodinâmica , Ubiquitina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...